A typical property of Baire $1$ Darboux functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak difference property of functions with the Baire property

We prove that the class of functions with the Baire property has the weak difference property in category sense. That is, every function for which f(x+h)−f(x) has the Baire property for every h ∈ R can be written in the form f = g+H+φ where g has the Baire property, H is additive, and for every h ∈ R we have φ(x+h)−φ(x) 6= 0 only on a meager set. We also discuss the weak difference property of ...

متن کامل

On Some Properties of Baire-1 Functions

In this paper, we give alternative proofs of some of the properties of Baire-1 functions with respect to the new characterization of Baire-1 functions due to P.Y. Lee, W.K. Tang and D. Zhao. Some well-known functions were given to illustrate some of these properties. Mathematics Subject Classification: Primary 26A21

متن کامل

A New Characterization of Baire Class 1 Functions

We give a new characterization of the Baire class 1 functions (defined on an ultrametric space) by proving that they are exactly the pointwise limits of sequences of full functions, which are particularly simple Lipschitz functions. Moreover we highlight the link between the two classical stratifications of the Borel functions by showing that the Baire class functions of some level are exactly ...

متن کامل

On Darboux Property of Fuzzy Multimeasures

We present some properties regarding Darboux property, non-atomicity, regular fuzziness of multimeasures taking values in the family of all closed nonvoid subsets of a real normed space. Key–words: Darboux property, fuzzy multimeasure, atom, non-atomic, regular, diffused.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1986

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1986-0857937-1